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City governments all over the world face challenges understanding mobility patterns within dense urban en-
vironments at high spatial and temporal resolution. While such measures are important to provide insights into
the functional patterns of a city, novel quantitative methods, derived from ubiquitous mobile connectivity, are
needed to provide policy-makers with better insights to improve urban management and planning decisions. In
this paper, we develop a model that uses large-scale WiFi probe request data to model urban mobility trajectories
in dense urban environments. We collect probe request data from a public Wifi network with 54 access points in
the Lower Manhattan section of New York City over one week, accounting for more than 30 million observations
and over 800,000 unique devices. First, we aggregate unique entries per access point and per hour, demon-
strating the potential to use WiFi data to approximate local population counts by type of user. We then use a
spatial network analysis to identify edge frequencies and directions of journeys between the network nodes, and
apply the results to the road and pedestrian sidewalk network to identify usage intensity levels and trajectories
for individual street segments. We demonstrate the significant potential in the use of WiFi probe request data for
understanding mobility patterns in cities, while highlighting non-trivial issues in data privacy raised by the

growing availability of public WiFi networks.

1. Introduction

With an annual growth of 60 million new city dwellers every year
(U. WHO, 2010), the world is experiencing a rapid population shift of
people moving from rural areas into urban environments over the last
several decades. Driven by technological innovations and increasing
economic opportunities (Dargay, Gately, & Sommer, 2007), this situa-
tion has led to a steady increase in motorized and pedestrian mobility
activity in cities all over the world (Millard-Ball & Schipper, 2010). For
city governments, this increased demand has lead to challenges in
managing city services and infrastructure, and in maintaining qual-
ity—of-life standards for its population, as congestion and overcrowding
of areas can negatively affect the city's economy (Sweet, 2014), sus-
tainability (Zhao, 2014) and its population's health (Hansson,
Mattisson, Bjoerk, Oestergren, & Jakobsson, 2011).

To address these challenges, city managers need to understand
patterns of urban mobility to enable targeted and “smart” interventions
to limit overcrowding, improve service delivery, and ensure effective

emergency response. In many cases, methods to measure mobility dy-
namics focus on reporting traffic counts at specific points in the city at
discrete times, typically using rather simple technologies (Slack, 2017)
that are limited in terms of scalability and real-time feedback, and that
can be cost-intensive when applied to large areas. With the rise of re-
mote and in-situ sensing technologies, the analysis of clo-
sed—circuit-television (CCTV) footage using computer vision machine
learning techniques offers a new, and increasingly popular, approach
for computer scientists and urbanists to count not only motor, but also
pedestrian traffic on a large scale (Slack, 2017).

However, these “counting-gate” methods are limited to traffic
counts at specific locations for a specific time period, and thus they do
not offer data about trajectories of pedestrians between them. Current
work in data mining aims to fill this gap by using mobile phone data to
model urban mobility (Calabrese, Diao, Di Lorenzo, Ferreira Jr., &
Ratti, 2013; Jiang et al., 2016), but shows limitations in terms of po-
pulation representation by capturing only mobile users of a specific
network provider, and typically with low spatial granularity. In
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addition, computer vision techniques create significant concerns
around confidentiality and privacy, as facial recognition methods be-
come more widely applied.

Data that are independent of specific network providers are able to
capture a larger sample of the population at any given place and time.
One example of this is smart device probe requests to WiFi access points
(APs) in public urban space. With an increasing number of public WiFi
APs and networks in cities, these networks can provide dense coverage
across the cityscape, particularly at the neighborhood or district scale.
Each AP continuously “senses” its surroundings in terms of potential
users equipped with WiFi-enabled mobile devices, which send probe
requests to available networks and proximate APs at regular fre-
quencies. With the increasing market penetration of WiFi connectible
mobile devices, such as tablets or smartphones (64% of all U.S. citizens
and approximately 80% in New York City owned a smartphone in 2016
(Smartphone Users, n.d.)), computer and urban scientists have begun to
use WiFi probe data with the aim to understand human behavior and
mobility (Kontokosta & Johnson, 2017). However, while many of the
large—scale studies focus on indoor activities (Abedi, Bhaskar, & Chung,
2014; Meneses & Moreira, 2012), less has been done discussing ev-
ery—-day movement patterns in open public spaces at the neighborhood
scale using Wifi probe data. This has largely been the result of the lack
of data available at necessary spatial and temporal granularity, and the
computational challenges in processing these data. Mobility data,
however, must be handled with appropriate data management and
access protocols, as concerns about data privacy become paramount. In
addition, using such data can also raise equity issues, as sampling bias
caused by differential access and technology adoption rates can exclude
certain demographic groups (Kontokosta, Hong, & Korsberg, 2017).

In this work, we hypothesize that WiFi probe data can be used to
analyze outdoor mobility and human trajectories in a large and densely
populated urban area at high spatial resolution and temporal frequency.
We use a dataset of WiFi probe requests collected by 54 public-access
WiFi APs over the duration of one week in Lower Manhattan in New
York City, NY, collected through the” Quantified Community” urban
test-bed (Kontokosta, 2016). First, we show how WiFi probe data can
be used to report hyperlocal, real-time counts at each AP, similar to
“counting gates” methods described above, and be used to understand
localized population segmentation. Second, we conduct network ana-
lysis to describe a spatial network that can be applied to street and
sidewalk segments. We demonstrate how these data can be used to
analyze common paths of travel and trajectories, indicating the in-
tensity of street activity over time. We begin by presenting recent lit-
erature on measuring urban mobility, and then present our data and
data processing steps. We introduce our methodology and describe our
results for pedestrian counts and trajectories. We conclude with an
in—depth discussion of the findings, including limitations, privacy
concerns, and applications to city management and planning.

2. Literature review
2.1. Capturing urban mobility

The most commonly used method to capture urban mobility by city
agencies is the installment of “counting—gates” at pre-defined locations,
such as intersections or heavily-used main roads. While technology has
improved over the years, the method has remained relatively the same
by using, for instance, pneumatic road tubes, Piezo-electric sensors or
infrared sensors (Slack, 2017) to count primarily motor traffic. While
these methods offer an easy way to quantify traffic aggregations on a
street for a specified time period, such as per hour or day, they are
limited in terms of temporal and geographical scalability and rather
expensive to run due to installation and service charges, compared to
the output they provide.

More current work uses advances in computer vision to analyze
closed—circuit-television (CCTV) feeds to count motorized and
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pedestrian traffic at lower costs. In doing so, researchers and city
governments are now able to count traffic at places with
CCTV-coverage, like high-volume intersections, by applying computer
vision algorithms, such as blob—detection (Trafficvision, n.d.). Focusing
primarily on motor traffic, this approach has been extended over the
years to also count pedestrians (Placemeter, n.d.). The analysis of CCTV
footage offers effective ways to aggregate traffic quantitatively and is
only limited by the number of CCTV-camera locations (with appro-
priate resolutions and fields of view) in a city. As the usage of CCTV
cameras in the urban environment is growing due to congestion and
security concerns, the method becomes increasingly applicable to count
traffic on a large scale. However, in focusing on traffic counts, it does
not offer any insight into the routes people take between their locations
and provides little ancillary information about activity patterns, and
hence do not generate critical information for city managers.

The increasing availability of open data has offered researchers
novel opportunities to study traffic routes, in particular for public
transport, on a large scale using a data mining approach. In doing so,
metro journeys (Tfl Study, n.d.), the use of public bike sharing schemes
(Woodcock, Tainio, Cheshire, & Goodman, 2014), or GPS traces of taxis
(Ferreira, Poco, Vo, Freire, & Silva, 2013), for instance, have been vi-
sualized and the time-dependent frequencies of routes through cities
detected.

While the results of such studies can contribute to the efficiency of
public transport systems, these open data sources do not include in-
formation about the population who do not use public transport. As
many people in U.S. cities travel by car or increasingly walk (Milne,
2014), using these data sources excludes a large portion of the urban
population and are therefore not fully representative. The focus on in-
dividual transport modalities also limits valuable information about
human behavior and activity at the micro- and meso-scales in various
urban environments.

A data source that includes these populations are call detail records
(CDR). With the increased use of mobile phones over the last decade,
CDR data from mobile phone providers have become a popular source
for urban mobility research. For instance, (Yuan & Raubal, 2012) ex-
tracted dynamic mobility patterns in urban areas using a ‘Dynamic
Time Wrapping’ algorithm, and were able to classify areas according to
the observed patterns. (Calabrese et al., 2013) combined mobile phone
traces and odometer readings from annual vehicle safety inspections to
map mobility as averaged individual total trip lengths for the case of
Boston. In doing so, researchers found, for instance, that the two most
important factors for regional variations in mobility are accessibility to
work and non-work destinations, while population density and mix of
land-use showed less significance. Other work uses CDR data to model
urban flows. (Gonzalez, Hidalgo, & Albert-Laszlo, 2008), for example,
studied 100.000 mobile phone user trajectories over six months and
found that human trajectories show a high degree of temporal and
spatial regularity. Furthermore, findings suggest that humans follow
rather simple, reproducible mobility patterns.

These studies demonstrate the opportunities for using CDR data to
study human mobility at the urban scale. However, at the same time,
telecommunication data can be sensitive and often difficult to access for
researchers. One possible way to gain access to such data is to take part
in a data mining challenges (Competition Example, n.d.) where provi-
ders make parts of their data publicly available. However, as available
data are pre—processed, their accuracy often suffer due to unknown data
processing steps (Traunmueller, Quattrone, & Capra, 2014). Further-
more, when data are provided by individual mobile phone providers,
they offer limited representativeness of the urban population by ex-
cluding various groups of people that use other providers, or people
that do not have a cell phone contract, such as the elderly or low-
er—-income populations, or those that use Pay—As-You-Go options.
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Fig. 1. WiFi AP locations in Lower Manhattan, New York City. Highlighted APs are compared to official counts.

2.2. WiFi data and urban mobility

A dataset that provides a more complete representation of the urban
population is WiFi probe data, which is provider independent. This has
been demonstrated by (Kontokosta & Johnson, 2017), who developed a
dynamic alternative to census data by estimating real-time population
by different categories (e.g., workers, residents, visitors) for a similar
testbed in New York City as used in this paper.

By default, a mobile device is configured to steadily scan its en-
vironment for available WiFi APs and continues to transmit data, in-
cluding time, geolocation and the device MAC address. Such data have
been used by researchers to model people's behaviour, such as queuing
activity and movement in indoor environments (Wang et al., 2013). An
early study (Sevtsuk, Huang, Calabrese, & Ratti, 2006) used WiFi data
of logged-in users, collected via 3000 AP within MIT university
buildings, to visualize and detect activity patterns and hence, draw
relationships to mobility within the campus. Also using the university
environment as a testbed, (Meneses & Moreira, 2012) were able to
describe movement of people in various academic buildings on two
campuses, using data from more than 550 APs over a duration of sev-
eral months and highlighting the relationship between spatial proper-
ties found in the environment and resulting human motion. (Abedi
et al., 2014) use a similar approach to discuss complex spatial-temporal
dynamics of movement in indoor shared zones, such as lounges and
office areas, at another university and were able to extract different

staff usage patterns of space (such as, frequency, duration, and utili-
zation peaks). Another study (Prentow, Ruiz-Ruiz, Blunck, Stisen, &
Kjrgaard, 2015) uses WiFi data to derive information to improve facility
management and planning for large building complexes, such as a
hospital, by quantifying area densities and flows.

Other work extends the usage of WiFi data to capture mobility for
outdoor spaces. Following a probabilistic approach that uses visited
destinations according to WiFi traces, (Danalet, Bierlaire, & Farooq,
2012) show the potential of WiFi data to predict user destinations and
routes. More recent work (Sapiezynski, Stopczynski, Gatej, & Lehmann,
2015) uses WiFi data collected through a large scale study to capture
human mobility for the case of Copenhagen. Based on a previous sci-
entific study, the data contain a high level of information about the
users and uses of data for logged—in users. In reality, WiFi probe data
that have been collected ‘in the wild’ are less detailed and the relative
number of people logging—in to public WiFi networks is limited. These
circumstances lead to questions about the suitability of an approach
relying on authentication of the network device for quantitative mo-
bility modeling. (Chilipirea, Petre, Dobre, & van Steen, 2016) show in
their work the potential of WiFi data that has been collected throughout
a 3—-day festival. However, as such festivals attract uncommon masses of
people for its duration, the study does not represent a normal day in a
city and, hence, it is unclear how the approach applies to typical si-
tuations.

A recent study (Tfl Study, n.d.) shows the usability of WiFi probe
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data to detect different routes and trains people take to reach their
destination on the London Underground network. We show in this
paper how similar data, collected by public Wifi APs without the need
for network log-in, can be used to model urban mobility on a large scale
and in a densely populated, unconstrained public area for a” normal”
week in New York City.

3. Methodology & results
3.1. Dataset description

The method we propose requires access to WiFi probe request data
that contains information about detected client devices and their
proximity to surrounding WiFi APs at a specific time. For this study, we
use a dataset provided by the ‘Alliance for Downtown New York’
(Downtown Alliance, n.d.), the non-profit management entity for
Downtown NY-Lower Manhattan's Business Improvement District. Our
dataset includes observations from 54 WiFi AP locations throughout the
study area covering the whole of Lower Manhattan south of Barclay and
Franklin Streets, and includes APs on two of the East River piers, as
shown in Fig. 1. With its mix of high density residential, retail, and
commercial buildings (Land-use, n.d.), Lower Manhattan represents a
very dynamic and diverse environment, allowing us to observe and
model mobility behavior of different groups of people as they activate
the area at different times throughout the day and the week.

The majority of APs are located on building rooftops (approximately
2-3 stories high) and capture WiFi enabled devices, regardless of
whether or not the device is associated with the network, within a
distance of 100 ft. or more, depending on the environment (Johnson,
Bonczak, & Kontokosta, 2018).

Spatially, APs are densely distributed along Broadway (especially at
Vesey and Wall Streets) and in the Financial District towards the East
River, focusing on more active corridors, such as Wall Street and John
Street. Density decreases towards the primarily residential area at the
West-side of Lower Manhattan. Locations for each AP were stored in a
separate Shapefile by the provider and were visualized on the NYC
street grid using mapPLUTO (mappluto, n.d.). Data were collected from
Friday, 2017/04/14, 0.00 AM to Friday, 2017/04/21, 12.00 PM, con-
taining a total of 30,862,317 data points collected by 1,175,039 unique
users. Each data point includes the MAC address of the observing AP,
the client device's MAC address, the device's received signal strength
indicator as seen by the AP (rssi), and the observation time.

3.2. Data pre-processing

Mobility data such as our WiFi probe dataset are highly sensitive
given the provision of MAC addresses of clients. Combined with logged
WiFi AP locations, such data can lead to privacy issues as it opens op-
portunities for tracking individuals. To ensure anonymity, we first
de-identified our dataset by replacing MAC addresses of clients with an
anonymous identifier, consisting of a unique incremental integer
starting from 1. Following the addition of the unique identifier, the
original MAC address is deleted, and no linkage keys are provided to
re-merge the unique identifier and the MAC address. In doing so, the
data could not be traced back to the individual and hence, would
eliminate many underlying privacy concerns. (The study received NYU
IRB approval with IRB No.: #IRB-FY2017-526.)

Using the de—identified dataset, we conduct a descriptive analysis to
identify possible missing inputs or other data errors to ensure the
completeness of the data for our analysis. We identify 628 data points
that were counted multiple times, and 3019 data points that were
missing geographical or temporal information. We remove these data
points from the dataset. Furthermore, we remove close to 1 million
entries from our dataset that were captured by multiple WiFi APs si-
multaneously, as this would confound our model and bias results. To
minimize spatial inaccuracy for these simultaneous entries, we retain
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the observation with the highest rssi-value, indicating the closest WiFi
AP location to the device, and exclude the remaining entries.

Next, we detect and remove all devices captured in the dataset that
exhibit connection patterns indicative of stationary or fixed devices, as
they would skew the mobility model by increasing an AP's use fre-
quency. We examine the connection patterns for each client and ob-
serve that while a majority of clients connected to various APs over the
study period - indicating movement — some clients were only captured
by a single AP during the entire period. These data are removed from
the dataset. We then identify and remove data points that showed no
movement for longer than 20 min, the average walking time for the
maximum distance between all APs within the testbed (1.3 miles), as
suggested by (Barton, Grant, & Guise, 2003). Such data are considered
to represent non-active users and are removed from the dataset as they
would skew the mobility model by increasing an AP's use frequency.
Overall, we exclude a total of 15,987,026 (51.80%) observations from
our raw data resulting in 14,875,289 observations from 835,797 unique
clients. We then joined the location and observation datasets by as-
signing AP addresses to each observation, according to the individual
AP ID number.

The most common way for city governments to model urban mo-
bility is the installment of “counting-gates”, providing traffic aggrega-
tions at specific locations for a defined temporal unit. By scanning and
detecting WiFi—enabled devices in hyper-local environments, we show
how WiFi APs can be used in a similar way, and enable deeper analyses
of trajectories and activity patterns. First, to detect variances depending
on time of day and differences between weekday and weekend, we
aggregate the total number of captured clients per hour of the day
across all APs. Fig. 2 presents these distributions and differences in
client counts between weekend (2017/04/15 and 2017/04/16) and
weekday are clearly visible. From a cursory examination of the client
activity patterns, we find that, as expected, counts are higher during the
work week than on weekends. Weekday distributions show three peaks
of increased client activity, one in the morning (6.00 AM-9.00 AM), one
during lunch time (12.00 PM-1.00 PM) and one in the early evening
(4.00 PM-6.00 PM). On the weekend, the distribution was found to be
smoother, increasing from the later morning (9.00 AM) and decreasing
in the early afternoon (5.00 PM). We interpret these observations as
reflections of the predominant commercial land use of Lower Man-
hattan, which is characterized by office workers commuting to and
from the area in the morning and evening and going to restaurants
near-by during the lunch hour. On the weekends, the area attracts
many visitors and tourists, due to its landmarks (such as the New York
Stock Exchange or One World Trade Center) and retail establishments
that populate the area throughout the day. At the network level, these
results reinforce the findings of (Kontokosta & Johnson, 2017).

3.3. Aggregation

Next, we aggregate these client observations per AP and per day to
show the usefulness of WiFi probe data for population counts at specific
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Fig. 2. Weekly distribution of WiFi requests over all APs for the cleaned da-
taset.
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Table 1
Comparison between official manual daily pedestrian counts and WiFi probe
requests.

Location Manual counts WiFi requests Offset %
Broadway at Pine Street 20,431 18,183 —-11.37
Broadway south of Fulton Street 37,158 34,845 —6.33
Broadway and Exchange Place 17,842 19,978 10.36
Water and Wall Street 7447 6885 -9.21
Water and Fulton Street 22,751 20,157 —-11.1

locations. We validate our aggregations with manually-collected daily
pedestrian counts at various locations as defined by the Downtown
Alliance (Downtown Alliance, n.d.). As these locations are not ne-
cessarily co-located with our WiFi AP locations, we select five locations
that are spatially proximate to specific AP locations. Fig. 1 highlights
these locations with a larger red dot, indicating three contiguous APs on
Broadway (at Fulton, Wall Street and Exchange Place) and two along
Water Street (at Fulton and Wall Street).

Table 1 shows the result of the comparison between the manual
counts per 24 h and our average counts per 24 h of unique clients per
AP. We find that our numbers vary between 6 and 11% from the
manual counts and tend to under—-count individuals. This difference can
be explained by several factors. First, it is unclear of the exact metho-
dology used for the manual counts, and manually counting is, in gen-
eral, an unreliable measure given the potential for human error.
Therefore, it is difficult to ascertain whether the observed variance,
especially between over— and under—counting, is caused by errors in the
WiFi method or in the manually counting process. Second, the un-
der-counting found in the WiFi observations could be a function of the
prevalence of WiFi-enabled devices. As was mentioned, approximately
80% of the NYC population has a smart device, and it is possible that
the under-counting reflects this penetration rate (although we would
assume, given the demographic and socioeconomic characteristics of
the population in the study area, that WiFi—enabled device use would
be higher than the city-wide average). This effect may also be mini-
mized because of individuals with more than one smart device, who
may be counted more than once. However, while these issues lead to
some uncertainty in interpretation, this result shows the potential for
using WiFi probe request data to estimate the number of people in
specific areas, similar to “counting—gate” approaches. In addition, this
method has numerous advantages over other counting methods, in-
cluding being able to identify unique visitors to a particular location
and, as we will demonstrate, paths of travel.

To detect spatial variance, we next map the WiFi—-derived count
aggregations based on individual AP locations per total day, from
Friday, 2017/04/14 to Thursday, 2017/04/20. We observe in Fig. 3
geographic differences in usage intensities by AP location depending on
the day of the week. The increased activity on weekdays compared to
the weekend is clearly visible and highlighted by the proportional dot
plot for each AP location. Analysis of the spatial distributions reveal
three “hot-spots” of increased activity located along Broadway, in the
Financial Center south of Wall Street, and at the intersection of Water
Street and Maiden Lane on the East Side. This pattern again reflects the
land-use of the immediate area: in addition to commercial buildings
driving weekday population, the area attracts a large number of tourists
and visitors to destinations such as Wall Street, Trinity Church and
historic Front Street at the East River. Broadway is one of NYC's main
north-south traffic routes in Manhattan, and attracts both locals and
visitors due to high retail density and substantial public transit infra-
structure.

These results show how WiFi APs can be used to measure population
counts at given locations, offering a more efficient and comprehensive
alternative to common approaches as described previously. However,
by measuring client aggregations at WiFi locations, one can only as-
sume mobility patterns (as for instance, if the movement is linear or

Computers, Environment and Urban Systems xxx (XXxXxX) XXX—XXX

clustered). Therefore the output offers only a limited picture as it does
not include any information about where or how people move between
these locations. Looking at differences in the land-use of the urban
environment and calculated WiFi counts, we can identify two types of
urban mobility patterns in the area. On Broadway, we would expect a
predominant linear pattern along the street from north to south (or vice
versa). In the historic Financial District, with its web of small streets
and large office buildings, we expect a more diffuse network pattern of
movement, intersecting more street segments and offering more options
for route-finding based on individual preference. We explore these
spatial trajectories in detail in the next section. We demonstrate how
the same WiFi probe data can be used to not only to generate ag-
gregations at specific points, but also to evaluate actual street network
usage by capturing movements between APs, allowing us to model
urban mobility at the individual street segment level.

3.4. Trajectories between WiFi AP locations

Applying methods from network science, we turn our set of client
activities into a graph, examining which nodes (or vertices) are con-
nected to each other via edges. By considering all journeys, we create a
network where the nodes are the WiFi AP locations, and the edges are
the client flows of consecutive AP-entries in each direction between
them, as defined by our 835,797 clients, and weighted by the number of
journeys carried out on each edge. Results show a highly connected
network of 54 WiFi APs on most of the 2916 edges with an average
degree of 38. A majority (78%) of all journeys were direct between
departure and destination point, without passing intervening nodes.

As indicated above, we would expect a high variance in activity
between Weekend and Weekdays, as well as during different times of the
day, such as Early Morning (0.00 AM-6.00 AM), Morning (6.00 AM-
12.00 PM), Afternoon (12.00PM-6.00PM) and Night (6.00PM-
12.00 AM). Fig. 4 presents the network graphs for each of these time
bins with edge frequencies for each journey between the WiFi AP node.
Frequencies show a long-tail distribution: while the most-frequented
journey of the week has 781,073 trips, the least-frequented journeys
are single trips between two WiFi APs and the mean frequency (J,)
among observed journeys overall is 102,452 (Q; = 58,677,
Qs = 164,988). In the graph, we indicate the frequency of journeys
between the nodes by the width of the edges — the wider an edge, the
more journeys detected, ranging from 1 to 21,387 journeys per day. As
indicated from our aggregations, we observe a high variance in mobility
patterns between Weekend and Weekdays: more journey activity is de-
tected throughout the week (J,,, = 161,191) compared to the weekend
(Jm = 73,087), when, in addition to visitors, a high number of office
workers populate the area. Furthermore, we observe that weekday
journeys start earlier and end sooner when compared to weekends.
While on weekdays many journeys are detected in the Morning (46%, as
people commute to work) and less at Night (24%, as people may go to
sleep earlier), we find the opposite pattern for weekends due to reduced
activity in the Morning (21%, as people might sleep later) and more
activity at Night (37%, as people might partake in social activities).

Looking at the type of movement found in the area, the network
graph supports our prior assumptions of linear (Broadway) and clus-
tered movements (Financial Center), showing a similar pattern for both
weekends and weekdays. While results indicate the highest journey
frequencies (J,,, = 324,096) along Broadway (as nodes on Broadway/
Fulton Street in the north are mostly connected to nodes at Broadway/
Wall Street in the south), we observe journeys with lower, but in all
directions evenly distributed, frequencies (J,, = 54,096) for nodes in
the Financial District (for instance, Water Street/Maiden Lane is ac-
cessed from all sides). As described above, we believe that this outcome
might result from differences in the scale of the built environment, such
as the smaller block sizes in this area, allowing more options for rou-
te—finding. We also can see that WiFi APs located at the piers of the East
River, where water taxis stop, show stronger connections to APs in the
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Financial District, as for instance on weekday mornings, when 62% of
all journeys from these APs lead into the Financial District. We interpret
this result as indication that people coming to the area by ferry are most
likely commuters going to and from work.

Different patterns of movement in the area become more clear when
plotting the directions of these journeys, such as where people come
from and where they go, to detect attractors in the area.

In Fig. 5, we show for the busiest time bin (Weekday Mornings,
6 AM-12 PM) the direction of each journey, as indicated by saturation
of blue arrows, and their frequencies, as indicated by edge width in red:
resulting blue patches indicate nodes of destinations within the net-
work. The output shows the dominance of linear journeys along
Broadway in both directions, north to south and south to north, in-
dicated by the larger red edge width and more directed blue arrow
heads between WiFi APs along Broadway. The two locations at the
corner of Broadway/Wall Street (in—-degree D;= 33, out-degree
D, = 31) and Fulton Street (D; = 31, D, = 29) show strong connections
mainly to other locations along the street segment, which might be the
result of two proximate subway stations. In contrast, we see how the
Financial Center (for instance, Water Street/Old Slip; D; = 42, D, = 34

as shown in Fig. 1) attracts people from multiple origins, as indicated by
thinner edges with a lower saturation of arrows, but coming from
multiple angles. This outcome might result from office and business
locations and their employees coming from public transport hubs, such
as the Water Taxi landings on the East River piers (D; = 7, D, = 25) and
subway stations.

To see how these movements affect the usage of street segments, we
next applied our graph to the street network. We used street network
data that are publicly available for New York City (New york city
streets, n.d.) and overlay it on our AP locations. As most of the locations
were offside road vectors, we first assigned them to the nearest road
segments, using the k-nearest neighbor classification algorithm (Cover
& Hart, 1967). Having assigned APs to road segments allowed us to
then generate the shortest path journeys between each WiFi AP location
as described by the network graph on the street segment level, using the
breadth-first search algorithm (Lee, 1961).

In Fig. 6, we show for each of our defined time bins the outcome of
our model. The opacity of red indicates the usage intensity for each
segment, normalized by day and week: the more opaque, the greater
number of journeys on that road segment. Compared to Fig. 4, we now

Fig. 4. Network graphs of client activities between
WiFi APs, for Weekends WE (a-d) and Weekdays WD
(e-g). Edges widths represents frequencies between
the nodes. (a) 0 AM-6 AM,WE (b) 6 AM-12 PM,WE
(c) 12PM-6PM,WE (d) 6PM-12AM,WE (e)
0AM-6AM,WD () 6AM-12PM,WD  (g)
12 PM-6 PM,WD (h) 6 PM-12 AM, WD.

(e) OAM—6AM, WD (f) 6AM-12PM, WD (g) 12PM-6PM,WD (h) 6PM-12AM, WD

1] | | | 21,387
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L] | ] | 21387

Fig. 5. Network graph, showing directions of movements between nodes for
Weekday Mornings, 6 AM-12PM, indicated by saturation of blue arrows, and
their frequencies, indicated by edge width in red: Blue patches indicate nodes of
destinations within the network. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

see how people use roads for their journeys between AP locations,
based on the shortest path algorithm. We observe that there are no
major changes in routing between weekend and weekdays or different
times of day, reflecting the result from our network graph. In addition,
we see that there is a strong relationship between the number of de-
tected routes and the time of day, as we observe an increase throughout
the day compared to nighttime hours. Overall, the results confirm the
importance of Broadway and near-by parallel roads (such as Trinity
Place and Church Street) as pedestrian routes. We see that the increased
activity throughout the Financial District is concentrated along Water
and Pearl Streets, connecting most of the AP locations along the East
River. Wall and Broad Streets also show a high frequency of journeys,

p.

¥

(a) 0-6AM, WE (b) 6-12PM,WE  (c) 12PM-6PM, WE
R TR
TS SN
I \/ . 3 \/v s .
(e) 0-6AM, WD (f) 6-12PM, WD  (g) 12PM-6PM, WD

1 108,812
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which we interpret as the preferred routes between the ferry landing
points at the East River piers and the office buildings in the Financial
District. As a preferred east-west connector between Broadway and
Financial Center, we can identify Pine and Fulton Streets, showing the
highest frequencies compared to other parallel streets.

These results of this street intensity analysis reflect official statistics
(Downtown Alliance, n.d.) on the most-used streets in the area, such as
Broadway and Fulton Streets, and support our hypothesis that WiFi
probe data can be used to estimate high spatiotemporal resolution
counts of pedestrians, but also to model street usage intensity and paths
of travel in a time-efficient and cost—effective way. Next, we will dis-
cuss the limits of our approach, potential applications, and future re-
search.

4. Discussion and implications

In this paper, we have presented a novel method to model urban
mobility in public space on a large scale using a data mining and net-
work analysis approach. The method requires access to WiFi probe
data, including information about client activities and location in-
formation of APs, which are becoming increasingly available as the
number of public and municipal WiFi networks grows. From the da-
taset, we extracted aggregations about client frequencies per WiFi AP
location, showing the method's potential to capture similar data as
commonly-used “counting-gates”, while employing a more efficient
process that also harnesses data to model pedestrian flows. We then
apply these WiFi probe data to a network graph and overlay open
source street boundary geodata to evaluate journeys and their fre-
quencies at the street segment level based on the shortest routes.
Typically, network analyses assume a lower level of connectivity re-
quiring intermediate nodes (in subway networks, for instance) and
therefore include betweenness centrality measures of nodes and edges
located on the shortest paths between nodes. Our network of 54 WiFi
APs is highly connected on most of its 2916 edges (mean node degree of
38). Unlike subway networks, our public WiFi AP network does not
require clients to pass intervening nodes due to its representation in the
physical environment (in our case 78% of all journeys were direct be-
tween departure and destination point, without passing intervening
nodes), so this measure was not considered. As publicly-available and
municipal WiFi networks in cities are continuously expanding, the use
of WiFi probe data to model urban mobility is becoming more precise.
This development suggests that the proposed methodology will become
increasingly applicable in the coming years.

) Fig. 6. Street network showing road usage per seg-

/Y / ment for Weekends WE (a-d) and Weekdays WD (e-
/\/ & g). The opacity of red indicates the frequency usage
/ % for each street segment: the more opaque, the more
< g journeys happen on the road segment. (a)

7 0-6 AM, WE (b) 6-12 PM,WE (c) 12 PM-6 PM,WE (d)
6-12AM,WE (e) 0-6 AM,WD (f) 6-12PM,WD (g)
12PM-6 PM,WD (h) 6-12PM,WE. (For interpreta-
tion of the references to colour in this figure legend,
the reader is referred to the web version of this ar-
ticle.)
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A
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4.1. Limitations

We acknowledge that this work is constrained by a number of
limitations. First, our method is highly dependent on the overall
number and density of AP locations within the network. The higher the
density of APs, the more spatially accurate the model's performance can
become. In our case, we have shown the potential of the approach for
cities with a relatively high penetration of WiFi APs, such as New York
City. However, even within this testbed, we observe differences in AP
distribution (as for instance a higher AP density was found along
Broadway, compared to secondary streets) that might affect the out-
come, such as linearity vs. clustering. We do not know how the same
approach would perform in other cities with a lower density of WiFi
APs, as for instance, in less developed countries. As cities in developing
countries show the highest rise in urban population (D. o. E. United
Nations, 2014), our method could contribute to urban planning in such
environments, which typically lack more formal infrastructure to col-
lect similar data, such as public transit RFID cards.

In addition to AP network density, the method we propose is highly
dependent on the accuracy of collected data. Accuracy could suffer, for
instance, due to shielding problems (e.g. signals impeded by buildings)
especially in dense urban areas. Therefore, researchers using this
method need to be aware of WiFi APs effective capture radii, and how
to account for variations in rssi. In our case, we also had to exclude a
rather large part — approximately half — of our data points that were
identified as stationary devices (such as a desktop computer in an office
building) to ensure the model's accuracy. Such devices are constantly
detected by the same surrounding WiFi APs, and hence captured in the
dataset throughout the day. Accurately detecting stationary devices is
thus critical to the accuracy of the mobility model.

Representativeness is also a concern when using WiFi probe data. As
described in the literature, we can expect a high capture rate in the case
of New York City due to a high penetration of WiFi-enabled devices
(Smartphone Users, n.d.). Although we validate our results against
manual,” ground-truth” pedestrian counts, which indicate our model's
relative performance, we are unable to quantify with certainty the exact
number of unaccounted for individuals. This limitation can lead to bias
in the model outputs, particularly as it pertains to understanding the
mobility of children, the elderly, and other population sub-groups less
likely to possess a WiFi—enabled device.

In this work, we do not differentiate between pedestrian or motorist.
As some roads are for motor traffic only, this might lead to inaccuracies
in route generation. Furthermore, here we apply the shortest-route
algorithm to generate our result. As people do not always follow the
shortest route on the street network or take the subway, we need to
consider the application of other routing algorithms to be more suitable
and detect users of the public transport.

Finally, we use data from a relatively short time period in the Spring
2017. While we believe this analyzed dataset is sufficient to develop
and test our methodology, it is not possible to generalize observed
patterns in counts or trajectories. Therefore, our interpretation of the
results is presented as a descriptive analysis of mobility behavior to
present the potential application of our approach.

4.2. Implications

We consider the potential of our approach to benefit a number of
user groups either researching urban mobility patterns or operating and
planning urban infrastructure and transport systems. These include:

Researchers in urban and computational studies can use the method
to model and analyze people flows in public space and detect to what
degree urban mobility patterns are impacted by the design and condi-
tion of the urban environment. In doing so, the output can be used to
describe possible relationships between human activity and urban
phenomena, such as crime, congestion, or property values, by in-
tegrating other data sources, such as localized crime data, road
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construction locations, or house prices.

Other researchers can use the method to further understand the
relationship between urban mobility and land-use, and discuss oppor-
tunities to identify and describe communities based on their movement
patterns and behavior. Our method, and the type of data used here, can
enable new investigations into the dynamics of socio-economic differ-
entiation in a city. Results of such work could further reinforce ex-
ploratory studies (Kontokosta & Johnson, 2017) suggesting WiFi data as
dynamic alternative to census data.

For city governments and urban policy-makers, tools can be built
using our method to inform urban planning processes and real-time
operational decisions. Such tools can help detect mobility patterns in a
city over time, and how these patterns might change in case of emer-
gencies or other anomalous events. Other tools based on this method
could inform planning decisions by modeling urban mobility on dif-
ferent road network configurations to see how mobility flow would be
impacted, such as when converting a street segment to a pedestrian-
only zone. Design and policy alternatives can be defined, modeled, and
tested to forecast the impacts of various land use or development sce-
narios on mobility patterns and city service demand.

The method can also support local retailers by understanding hy-
perlocal patterns of pedestrian activity. The model could be used, for
instance, to suggest locations that have high rates of passers-by, and
thus large numbers of potential customers. Furthermore, as the method
is able to detect different temporal patterns of activity related to an
area's land-use composition, it can further inform locational decisions
and be used to evaluate the impacts of space programming and com-
plementary (or competing) uses.

For residents and visitors, mobile applications can be developed to
improve pedestrian navigation and wayfinding. Such applications can
suggest routes based on preferences to avoid or seek crowds, depending
on the user's mood in real-time. In offering user-defined routes, such
applications have the potential to support urban walkability, impacting
urban quality-of-life and individual well-being.

5. Conclusion and future work

We have presented a novel methodology to efficiently model urban
mobility in public spaces at scale using WiFi network probe request
data, and to couple detected movement patterns to the local street
network to measure usage intensities. Our analysis demonstrates the
potential to use WiFi probe request data as an alternative to other
traditional technologies, one that allows for a hyperlocal understanding
of mobility patterns and human behavior in heterogeneous urban en-
vironments. With the increasing ubiquity of WiFi-enabled mobile de-
vices and municipal WiFi networks, our approach can be scaled to cover
large urban areas without the need for new or dedicated pedestrian
counting technologies.

To improve the accuracy of the model, we will continue to differ-
entiate between pedestrians and motor-traffic by using the temporal
information provided in the data as proxy for individual's movement
speed. By combining output with additional information about road
types (if pedestrian—friendly or not), we will be able to inform routing
procedures of the model accordingly and will provide a more accurate
picture of urban mobility. To minimize flaws due to route generation,
we will review and test routing algorithms other than the short-
est-route. Finally, to more completely explore mobility patterns and the
potential causal links between activity and urban environmental con-
ditions, we will next include data capturing a longer time frame and a
larger geographic area. As cities all over the world face challenges of
congestion and livability exacerbated by growing populations, the
ability to measure, model, and predict urban mobility at high resolution
is a critical tool for city managers and planners responsible for im-
proving quality-of-life for city dwellers.

It must be acknowledged and emphasized that these data can be
highly sensitive, and the potential for technology providers to track
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individuals creates a significant concern that should be at the forefront
of public and regulatory discussions of data privacy and transparency.
Our research is intended to show how the responsible use of high re-
solution spatiotemporal data can inform non-trivial urban operational
and planning decisions that could have meaningful impacts on existing
and future cities. By highlighting privacy concerns, we also hope that
this work can help to raise awareness about what data cities and cor-
porations are collecting, and how these data can be used.
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