Comparisons of Mandatory and Discretionary Lane Changing Behavior on Freeways

Matthew Vechione, Esmaeil Balal, and Ruey Long Cheu
The University of Texas at El Paso

Background
A lane change is a lateral movement of a vehicle which
is always accompanied with a longitudinal movement A lane changing event involves up to five vehicles (see A lane changing event involves up to five vehicles (see
$S, F B, P B, F A, P A$ in the figure below).

A lane change may be modeled as a four-step process: (2) seliection of target lane; (3) checking for opportunity to move; and (4) the actual move.

There are two types of lane changes on freeways: mandatory and discretionary.
A Mandatory Lane Change (MLC) occurs when a
driver must change lanes to exit a freeway, avoid a Marinatory Lane Change (MLC) occurs when a
driver must change lanes to exit a freeway, avoid a
lane closure downstream, turn at a downstream lane closure downstream, turn at a downstream
intersection, etc.
A Discretionary

$$
\begin{aligned}
& \text { A Discretionary Lane Change (DLC) occurs at a a a a } \text { are er drive own discretion for faster speed, greater } \\
& \text { following distance, further line-of-sight, etc. }
\end{aligned}
$$ A driver is expected to have different decision rules

and/or risk-taking behavior for the two types of lane changes.

Objectives

The objectives of this research are to

1. Examine descriptive statistics for variables that describe
respectively,
2. For each variable, conduct hypothesis test on the Cfference between the means of MLCs and DLCs.
3. For each variable, apply the Kolmogorov-Smirnov (KS)
test to test the difference in the observed cumulative probability distributions between MLCs and DLCS.
4. For each variable, fit the probability distributions to
the MLC and DLC data respectively, and use the KS the MLC and DLC data respectively, and use the KS
test to test the difference between the fitted test to test the difite
probability distributions.
Literature Review
Based on a survey from 443 drivers in EI Paso, TX by
Balal et al. (2014), the top four input parameters were Baial etal. (2014), the top four input parameters.
gaps and distances, as shown in the figure below.

Notation	Definition	Unit	Range
$\boldsymbol{\sigma}_{\text {PB }}$	Gap between S and $P B$	m	≥ 0
$\boldsymbol{G}_{\boldsymbol{P A}}$	Gap between S and $P A$	m	≥ 0
$\boldsymbol{\sigma}_{\boldsymbol{F A}}$	Gap between S and $F A$	m	≥ 0
\boldsymbol{D}	Gap between $P A$ and $F A$	m	≥ 0

Formulas for calculating the lane changing variables are
Front gap before lane change (in meters):
$G_{P B}=\left(Y_{P B}-L_{P B}\right)-\left(Y_{S}\right), G_{P B} \geq 0$
Front gap after lane change
$G_{P A}=\left(Y_{P A}-L_{P A}\right)-\left(Y_{S}\right), G_{P A} \geq 0$
Rear gap after lane change (in meters):
$G_{F A}=\left(Y_{S}-L_{S}\right)-\left(Y_{F A}\right), G_{F A} \geq 0$
Distance (in meters):
$D=\left(Y_{P A}-L_{P A}\right)-\left(Y_{F A}\right), D \geq 0$ where:
$\circ L$ is the length of the vehicle;
O Y is the longitudinal position of each vehicle P represents a preceding vehicle, B is before the lane change; and A is after the lane change.

Vehicle Trajectory Data
From NGSIM data base.
 emeryvile, CA
Dataset A
der
U.S. Highway 101
Los Angeles $C A$ Los Angales, CA
Dataset B

Methodology

Only passenger cars selected as subject vehicles; Vehicles that changed lanes between lanes 5 and 6
were assumed to make a MLC; Vehicles that changed lanes between lanes 2 to lane 4 were assumed to make a DLC
ane 1 omitted, as it is a Hov lane;
For each subject vehicle, the time t when the lane
changing event occurred was taken as changing event occurred was taken as time when the
front center of the subject vehicle crossed the lane markers
Variable values were calculated at $t-0.4, t-0.3, t-0.2$,
to t seconds wre used as the representative value.
The averaging of data to 0.5 second intervals was to: Reduce error caused by instantaneous values
the NGSIM data; the NGSIM data
i. Be more consistent with human perception time
and
iii. Be consistent with other research that used NGSIM

Statistical Analyses 1. Descriptive Statistics - Dataset A

2. Difference Between Two Means

- Dataset A

3. Observed Distributions

The KS test compares a cumulative distribution against
the theoretical cumulative distribution the theoretical cumulative distribution
cumulative distributions against one another
The maximum difference between the two distributions is computed by:

$$
d=\max _{x, y}|F(x)-F(y)|
$$

d is compared to a critical value $d_{n_{1}, n_{2}, a}$

$$
d_{n_{1}, n_{2}, \alpha}=k_{\alpha} \sqrt{\frac{n_{1}+n_{2}}{n_{1} n_{2}}}
$$

where n_{1} and n_{2} are the sample sizes of the two
distributions, k_{α} is the KS test parameter with level of distrinutitions,
significance $=a$

- Dataset A				
Varame	${ }_{6}$	9^{2}	$c_{\text {m }}$	0
-	0.164	0.126	0.076	0.085
Critacalvauiese 0.0 .142	Reject H_{0}	Falto orject H_{0}	Ito reiect H_{0}	Falt oreect H_{0}
Critcalvaveiose 0.0 .15	Reject H_{0}	Fallt oreect H_{0}	Ho	Fall to reect H_{0}
- Dataset B				
Varaste	c_{m}	$\mathrm{c}_{\text {m }}$	c_{m}	o
${ }^{\circ}$	0.499	0.101	0.108	0.146
	Reject H_{0}	но	fall	Falto reject H_{0}
Conteavavaies 0.0020	Reject H_{0}	fall	Fall 0 orecect H_{0}	Fall oraje

Best case $\left(G_{F A}\right.$ in Dataset A) Worst case ($G_{p B}$ in Dataset B)

4. Fitted Probability Distributions - The observed data was then fitted with probability
distributions using @RISK. - MLC

- DLC:

The lognormal distribution was recommended Example: log-normal distribution fitted for $G_{E A}$, Dataset

The KS test was then applied to the fitted log-normal
distributions for MLC and DLC. Dataset A - difference between MLC and DLC

Conclusions

All variables may be described by the log-normal distribution.
There is no significant difference between MLC and DLC for the
and D)
between MLCs and DLCs
For $G_{p \text { (}}$ (in the original lane), significant differences are
found between MLC Population means between MLCs and DLCs in Dataset
B (at 95% confidence)
Observed probability distributions in Dataset A (at
95% confidence)
Observed probability distributions in Dataset B (at
95% confidence)
Fitted log-normal distributions in Dataset A (at 90\%
confidence) confidence)
Fitted log-normal distributions in Dataset B (at 95\%
confidence)

