Comparisons of Mandatory and Discretionary Lane Changing Behavior on Freeways

Background

- A lane change is a lateral movement of a vehicle which is always accompanied with a longitudinal movement.
- A lane changing event involves up to five vehicles (see S, FB, PB, FA, PA in the figure below).

- A lane change may be modeled as a four-step process: (1) motivation;
 - (2) selection of target lane;
 - (3) checking for opportunity to move; and
 - (4) the actual move.
- This research focuses on step (3).
- There are two types of lane changes on freeways: mandatory and discretionary.
- A Mandatory Lane Change (MLC) occurs when a driver **must** change lanes to exit a freeway, avoid a lane closure downstream, turn at a downstream intersection, etc.
- A Discretionary Lane Change (DLC) occurs at a driver's own **discretion** for faster speed, greater following distance, further line-of-sight, etc.
- A driver is expected to have different decision rules and/or risk-taking behavior for the two types of lane changes.

Objectives

The objectives of this research are to:

- . Examine descriptive statistics for variables that describe vehicle interactions for MLCs and DLCs, respectively.
- 2. For each variable, conduct hypothesis test on the difference between the means of MLCs and DLCs.
- 3. For each variable, apply the Kolmogorov-Smirnov (KS) test to test the difference in the *observed* cumulative probability distributions between MLCs and DLCs.
- 4. For each variable, fit the probability distributions to the MLC and DLC data respectively, and use the KS test to test the difference between the *fitted* probability distributions.

Literature Review

• Based on a survey from 443 drivers in El Paso, TX by Balal et al. (2014), the top four input parameters were gaps and distances, as shown in the figure below.

- where:

Vehicle Trajectory Data

Interstate 80 (I-80) Emeryville, CA **Dataset A**

Methodology

- markers;

- and
- data.

Matthew Vechione, Esmaeil Balal, and Ruey Long Cheu The University of Texas at El Paso

• Formulas for calculating the lane changing variables are: • Front gap before lane change (in meters): $G_{PB} = (Y_{PB} - L_{PB}) - (Y_S), \quad G_{PB} \ge 0$ • Front gap after lane change (in meters): $G_{PA} = (Y_{PA} - L_{PA}) - (Y_S), \quad G_{PA} \ge 0$ Rear gap after lane change (in meters): $G_{FA} = (Y_S - L_S) - (Y_{FA}), \quad G_{FA} \ge 0$ • Distance (in meters): $D = (Y_{PA} - L_{PA}) - (Y_{FA}), D \ge 0$

 \circ L is the length of the vehicle; \circ Y is the longitudinal position of each vehicle; • *P* represents a preceding vehicle; • F represents a following vehicle; \circ *B* is before the lane change; and \circ A is after the lane change.

• From NGSIM data base.

Cambridge Systematics, Inc. (2005)

• Only passenger cars selected as subject vehicles;

Vehicles that changed lanes between lanes 5 and 6 were assumed to make a MLC;

• Vehicles that changed lanes between lanes 2 to lane 4 were assumed to make a DLC;

• Lane 1 omitted, as it is a HOV lane;

• For each subject vehicle, the time t when the lane changing event occurred was taken as time when the front center of the subject vehicle crossed the lane

• Variable values were calculated at t-0.4, t-0.3, t-0.2, t-0.1, and t seconds, and the average values from t-0.4 to t seconds were used as the representative value. The averaging of data to 0.5 second intervals was to:

i. Reduce error caused by instantaneous values in the NGSIM data;

ii. Be more consistent with human perception time;

iii. Be consistent with other research that used NGSIM

Statistical Analyses 1. Descriptive Statistics

Dataset A

Variable	G _{PB}		G _{PA}		G _{FA}		D		
Unit	m		m		m		m		
	MLC	DLC	MLC	DLC	MLC	DLC	MLC	DLC	
Sample size	166	135	166	135	166	135	166	135	
Min	0.61	4.33	0.31	0.07	1.40	0.49	10.25	6.06	
Max	124.26	76.97	47.75	105.37	80.03	93.07	115.33	162.15	
Mean	15.08	15.18	10.32	11.46	15.35	17.58	30.12	33.42	
Std. deviation	13.97	8.63	8.66	13.43	12.10	14.66	16.65	20.85	
Skewness	4.07	3.13	1.97	3.44	2.11	1.94	1.91	2.65	

Dataset B

Variable	G _{PB}		G _{PA}		G _{FA}		D	
Unit	r	n	m		m		m	
	MLC	DLC	MLC	DLC	MLC	DLC	MLC	DLC
Sample size	71	128	71	128	71	128	71	128
Min	5.63	3.79	3.46	0.82	1.93	0.45	11.51	15.24
Max	185.81	74.08	160.89	216.07	92.06	103.51	172.54	234.74
Mean	50.74	19.11	22.44	20.83	22.88	20.95	49.72	46.06
Std. deviation	40.70	12.72	24.01	24.82	18.69	16.10	30.80	27.49
Skewness	1.11	2.06	3.35	4.65	1.59	2.37	1.64	3.34

2. Difference Between Two Means

Dataset A

Variable	G _{PB}		G _{PA}		G _{FA}		D	
Unit	m		m		m		m	
	MLC	DLC	MLC	DLC	MLC	DLC	MLC	DLC
Sample size	166	135	166	135	166	135	166	135
Mean	15.08	15.18	10.32	11.46	15.35	17.58	30.12	33.42
Std. deviation	13.97	8.63	8.66	13.43	12.10	14.66	16.65	20.85
<i>t</i> -statistic	-0.07		-0.85		-1.42		-1.49	
<i>p</i> -value	0.944		0.398		0.1	.57	0.1	.37
Conclusion (a/2=0.025)	Fail to r	eject H _o	Fail to reject H_0		Fail to reject H_0		Fail to reject H_0	

Dataset B

Variable	G _{PB}		G _{PA}		G _{FA}		D	
Unit	m		m		m		m	
	MLC	DLC	MLC	DLC	MLC	DLC	MLC	DLC
Sample size	71	128	71	128	71	128	71	128
Mean	50.74	19.11	22.44	20.83	22.88	20.95	49.72	46.06
Std. deviation	40.70	12.72	24.01	24.82	18.69	16.10	30.80	27.49
<i>t</i> -statistic	6.38		0.45		0.73		0.83	
<i>p</i> -value	0.000		0.654		0.466		0.406	
Conclusion (a/2=0.025)	Reje	ct H _o	Fail to reject H_0		Fail to reject H_0		Fail to reject H_0	

3. Observed Distributions

- The KS test compares a *cumulative distribution* against cumulative distributions against one another.
- The maximum difference between the two distributions is computed by:

$$d = \max_{x,y} |F(x)| = \frac{1}{2} \sum_{x,y} |F(x)|$$

 \circ *d* is compared to a critical value $d_{n_1,n_2,a}$:

$$d_{n_1, n_2, \alpha} = k_{\alpha} \sqrt{\frac{n_1 + n_2}{n_1 n_2}}$$

significance = α .

the theoretical cumulative distribution or two

|(x) - F(y)|

where n_1 and n_2 are the sample sizes of the two distributions, k_{α} is the KS test parameter with level of

Variable	G _{PB}	G _{PA}	G _{FA}
d	0.164	0.126	0.076
a=0.10 Critical Value = 0.142	Reject H _o	Fail to reject H_0	Fail to reject H_c
a=0.05 Critical Value = 0.157	Reject H _o	Fail to reject H_0	Fail to reject H_c
• Dataset B	G	6	G
d	0.499	0.101	0,108
a=0.10	Reject Ho	Fail to reject H_0	Fail to reject H_c
Critical Value = 0.181			
Critical Value = 0.181 a=0.05 Critical Value = 0.201	Reject H _o	Fail to reject H_0	Fail to reject H_0
Critical Value = 0.181 a=0.05 Critical Value = 0.201	Reject H _o	Fail to reject H_0	Fail to reject H _c
Critical Value = 0.181 a=0.05 Critical Value = 0.201 Best case (G_{FA} in	Reject H _o Dataset A)	Fail to reject H _o Worst	Fail to reject H_0 case (G_{PB} in

4. Fitted Probability Distributions

• The observed data was then fitted with probability distributions using @RISK.

MLC

Variable	G _{PB}	G _{PA}	G _{FA}	
		Dataset A		
Unit	m	m	m	
Best fit	Log-logistic	Pearson 5	Log-normal	
2 nd best fit	Pearson 5	Log-normal	Inverse Gaussian	
3 rd best fit	Log-normal	Inverse Gaussian	Pearson 5	
Recommended		Log-n	ormal	
Log-normal location parameter, λ	2.404	2.068	2.489	
Log-normal scale parameter, ξ	0.787	0.730	0.695	
		Dataset B		
Unit	m	m	m	
Best fit	Exponential	Inverse Gaussian	Inverse Gaussian	
2 nd best fit	Inverse Gaussian	Log-normal	Log-normal	
3 rd best fit	Log-normal	Pearson 5	Pearson 5	
Recommended		Log-n	ormal	
Log-normal location parameter, λ	3.678	2.729	2.874	
Log-normal scale parameter, ξ	0.705	0.873	0.715	

• DLC:

Variable	G _{PB}	G _{PA}	G _{FA}	
		Dataset A		
Unit	m	m	m	
Best fit	Pearson 5	Exponential	Inverse Gaussian	
2 nd best fit	Log-logistic	Log-normal	Log-normal	
3 rd best fit	Log-normal	Inverse Gaussian	Pearson 5	
Recommended		Log-n	ormal	
Log-normal location parameter, λ	2.580	2.006	2.603	
Log-normal scale parameter, ξ	0.529	0.930	0.726	
		Dataset B		
Unit	m	m	m	
Best fit	Pearson 5	Log-normal	Log-logistic	
2 nd best fit	Log-normal	Log-logistic	Pearson 5	
3 rd best fit	Log-logistic	Pearson 5	Log-normal	
Recommended		Log-n	ormal	
Log-normal location parameter, λ	2.767	2.594	2.810	
Log-normal scale parameter, ξ	0.606	0.940	0.681	

-Mandator - Discretionar

m
Log-logistic
Pearson 5
Log-normal

3.345

0.573

m Log-logistic Pearson 5 Log-normal

3.678

0.552

- The lognormal distribution was recommended.
- \circ Example: log-normal distribution fitted for G_{FA} , Dataset

• The KS test was then applied to the fitted log-normal distributions for MLC and DLC.

Dataset A – difference between MLC and DLC

V	ariable	G _{PB}	G _{PA}	G _{FA}	D
	d	0.168	0.077	0.066	0.066
a=	Critical Value	0.155	0.165	0.178	0.135
0.10 C	Conclusion	Reject H _o	Fail to reject H_0	Fail to reject H_0	Fail to reject H_0
a=	Critical Value	0.172	0.183	0.197	0.150
0.05	Conclusion	Fail to reject H_0	Fail to reject H_0	Fail to reject H_0	Fail to reject H_0

Dataset B – difference between MLC and DLC

V	ariable	G _{PB}	G _{PA}	G _{FA}	D
	d	0.515	0.066	0.041	0.049
a=	Critical Value	0.126	0.117	0.169	0.113
0.10 Conclusi	Conclusion	Reject H _o	Fail to reject H_0	Fail to reject H_0	Fail to reject H_0
a=	Critical Value	0.139	0.129	0.187	0.125
0.05	Conclusion	Reject H _o	Fail to reject H_0	Fail to reject H_0	Fail to reject H_0

Best case (G_{FA} in Dataset B)

Conclusions

- All variables may be described by the log-normal distribution.
- There is no significant difference between MLC and DLC for the three variables in the **target lane** (i.e. G_{PA} , G_{FA} , and D).
- These may be common variables between MLCs and DLCs
- For G_{PB} (in the original lane), significant differences are found between MLC and DLC:
- Population means between MLCs and DLCs in Dataset B (at 95% confidence)
- Observed probability distributions in Dataset A (at 95% confidence)
- Observed probability distributions in Dataset B (at 95% confidence)
- Fitted log-normal distributions in Dataset A (at 90% confidence)
- *Fitted* log-normal distributions in Dataset B (at 95%) confidence)