

Transportation Research Board 97th Annual Meeting

January 7–11, 2018 • Washington, D.C.

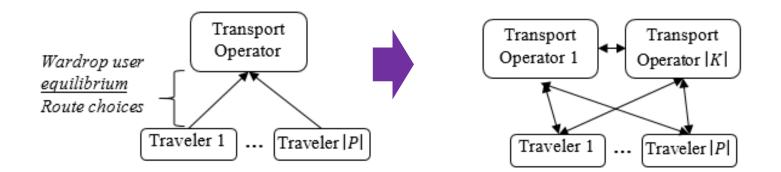
#18-04367

Route-cost-assignment with joint user and operator behavior as a many-tomany stable matching assignment game

SAEID RASULKHANI* <u>SAEID@NYU.EDU</u>

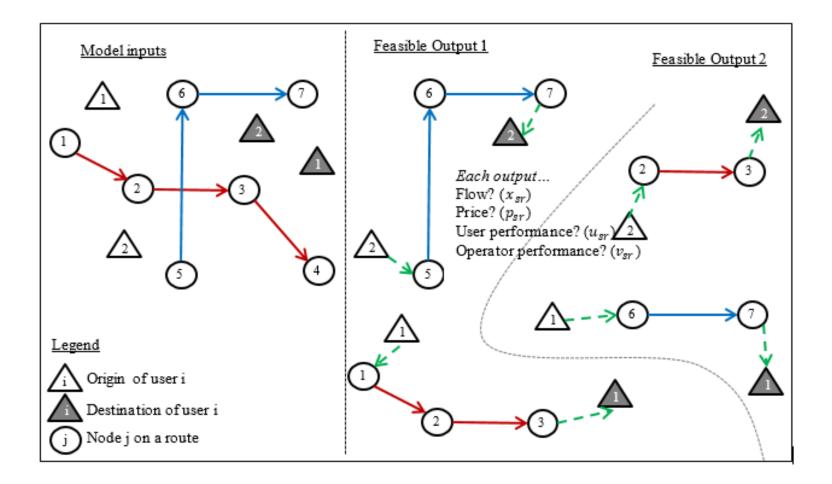
JOSEPH CHOW* JOSEPH.CHOW@NYU.EDU

*C²SMART University Transportation Center, New York University, New York, NY, USA


> CONNECTED CITIES WITH SMART TRANSPORTATION

- Classical traffic assignment models
 - Focused on just one side of decision makers
 - Negligence about the operator decisions
- Look at both sides of users and operators
- Operators behavior effects network flow and user decision

Introduction


- Mobility as a service
 - conventional fixed route transit
 - flexible transit
 - Rideshare
 - Carshare
 - Microtransit
 - Ridesourcing
- Important to forecast
 - Failure or success depend on cost sharing
 - Kutsuplus in Helsinki
 - Car2Go in San Diego

Problem Illustration

4/19

Problem Description

- Travelers choice depends on <u>cost allocation</u> decisions
 - Fare

•••

- Wait time, Access time, Detour time, Reservation time
- Fare splitting, Capacity reliability, Credit/discount for switching pickup/drop-off location

Cost allocation Cost transfer		Example systems			
Fare	User → Operator	Public transit, taxi, on-demand ridesharing, vehicle sharing			
Wait time	Operator \rightarrow User	Public transit, taxi, on-demand ridesharing			
Access time	Operator → User	Public transit, vehicle sharing			
Detour time User → User		Public transit, on-demand ridesharing			
Reservation time	Operator → User	Vehicle sharing, on-demand ridesharing			
Capacity reliability	Operator → User	Public transit, vehicle sharing			
Credit/discount for switching pickup/drop-off location Operator → User		Public transit, on-demand ridesharing, vehicle sharing			
Fare splitting	User → User	Public transit, on-demand ridesharing			


- Focus on both sides (users and operators)
- understanding beyond the route choices of travelers
- Assignment model framework
 - Based on stable matching

Assignment Game

6/19

Transportation applications of Game Theory

Non-cooperative game:

- Harker (1988), Zhou et al. (2005), Anshelevich et al. (2008)
- Cooperative game:
 - Matsubayashi et al. (2005): Air Transportation
 - Agraval & Ergun (2008): Network Flow
 - Hernandez & Peeta (2014), Hezarkhani & Slikker (2016): Freight
 - Wang & Erera (2014), Dai & Chen (2015), Wolfson & Lin (2017):
 Ridesharing
 - Rosenthal (2017): Transit
 - Aghajani & Kalantar (2017), Chen(INFORMS 2017): Parking Management

Proposed Model

R set of operators

S set of users

 $a_{sr} = \max \{0, U_{sr} - t_{sr}\}$ Payoff value for matching btw s and r

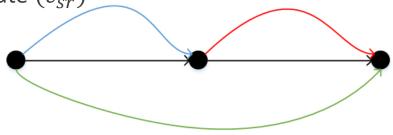
 C_r operating cost of route r

 x_{sr} the number of users s that are matched to route r

 $A_r \subseteq A$ disjoint sets of segments of route r

$$\begin{aligned} \max \sum_{s \in S} \sum_{r \in R} a_{sr} x_{sr} \\ \text{s.t.} \\ \sum_{r \in R} x_{sr} \leq q_s \qquad \forall s \in S/\{k\} \\ \sum_{s \in S/\{k\}} \delta_{asr} x_{sr} \leq w_a \qquad \forall a \in A_r, r \in \mathbb{R} \\ \sum_{s \in S/\{k\}} x_{sr} \leq M(1 - x_{kr}) \qquad \forall r \in \mathbb{R} \\ \sum_{s \in S/\{k\}} x_{sr} \in \mathbb{Z}_+ \qquad \forall s \in S/\{k\}, r \in \mathbb{R} \\ x_{kr} \in \{0,1\} \qquad \forall r \in \mathbb{R} \end{aligned}$$

Summary of Differences



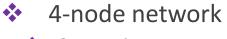
Pay off values

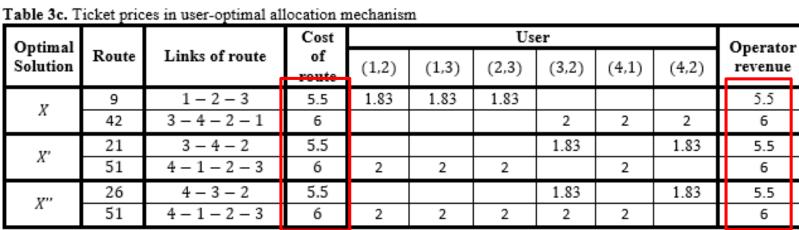
$$a_{sr} = max\{0, U_{sr} - t_{sr} - c_{sr}\}$$

$$a_{sr} = \max\{0, U_{sr} - t_{sr}\}$$

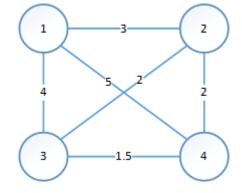
- Routes has operating cost of C_r , cost of route will be divided between the users of that route (c_{sr})
- Capacity is segment level

Computational Experiments

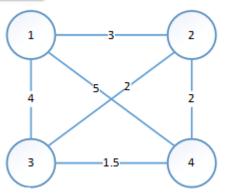

- 4-node example
 - with demand 1, without capacity
 - with demand 5, capacity 2
 - $\bullet \quad C_r = 5 + 0.5 \times |A_r|$
- NYC taxi, with capacity 3



Example


Scenario 1

* $W_{a\in A_r} \to \infty$



Example

4-node network

Scenario 2

$$\bigstar \quad w_{a \in A_r} = 2$$

Table 4c. Ticket prices in operator-optimal allocation r	mechanism
--	-----------

		Cost	Ticket price				Operator		
Route Links of route		of	(1.0)	(1.2)	(2.2)	(2.2)	(4.1)	(1.2)	revenue
		route	(1,2)	(1,3)	(2,3)	(3,2)	(4,1)	(4,2)	
6	4 - 2	5						5.5	5.5
7	1-3-2	5.5		3		5			8
9	1-2-3	5.5	5	2	5				12
25	4 - 1 - 2	5.5	5				5		10
26	4 - 3 - 2	5.5				5		4	9
28	4 - 2 - 3	5.5			5			5.5	10.5
49	4 - 1 - 3 - 2	6		3		5	5		13
51	4 - 1 - 2 - 3	6	5		5		5		15

NYC taxi case study

Wednesday October 5th 2016 from 8AM to

755 taxi trips were conducted during the study

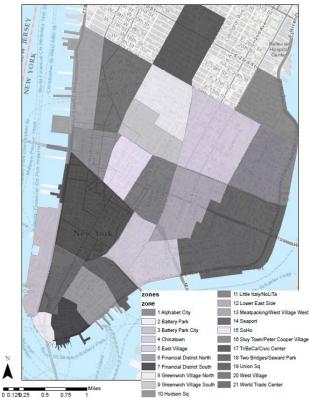
* $\{(O_f - O_g - D_f - D_g), (O_f - O_g - D_g - D_f), (O_g - O_f - D_f), (O_g - O_f - D_f), (O_g - O_f), (O_g - O_g), (O_$

the lower Manhattan region, 21 zones

Data:

**

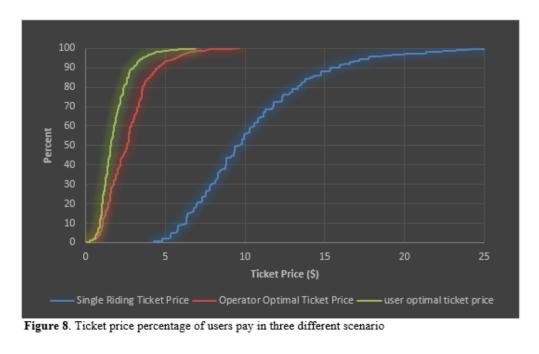
*


8:30AM

period

Routing:

 $(O_f, D_f), (O_g, D_g)$



Results

- Total mileage from 1996.9 miles to 1621.5 miles (31.4% decrease)
- 542 of 755 users decide to share their ride (71.8%)

Single and Shared Taxi Rides-NYC

Results

Gap btw user and operator optimal ticket price

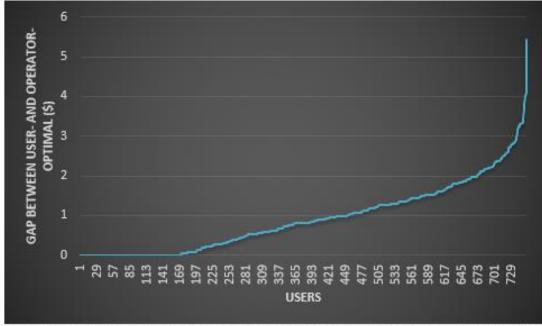
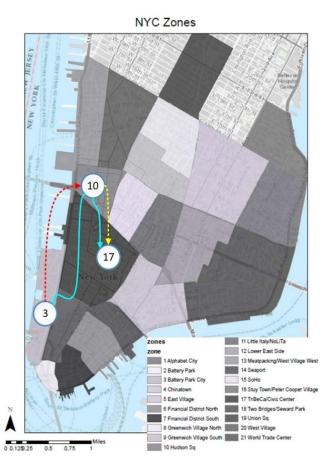


Figure 9. Sorted gap between user- and operator-optimal pricing under shared taxi policy.



Results

Let's look closer
(3,10), (10,17) and (10,17)

C2 SMART

16/19

Results for one coalition

		users (1,2) and (1,7) in single a	Users			
	Path	Result	(3,10)	(10,17)	(10,17)	
Single taxi riding	¢	Travel time	8			
		Ticket pri	7.55			
		User prof	0			
	1	Operator pr	5.57			
		(ticket price – op	5.57			
	$5 \rightarrow 1$	Travel time		11		
		Ticket pri		7.50		
		User prof		0		
		Operator pr		5.52		
		(ticket price – op		0101		
	ξ ↓ 6	Travel time			11	
		Ticket pri			7.85	
		User prof			0	
		Operator pr			5.87	
		(ticket price – op				
Ridesharing taxi riding	$1 \rightarrow 2 \rightarrow 7$	Travel time	8	11	11	
		Ticket price (\$)	User optimal	b + 1.32	b+1.32	b + 1.32
			Operator optimal	b + 1.98	b + 1.98	b + 1.98
		User profit (\$)	User optimal	9.43 – b	10.58 – b	10.93 – b
			Operator optimal	8.77 – b	9.92 – b	10.27 – b
Rid ta.		Operator profit (\$)	User optimal	3b		
		(ticket price - operation cost)	Operator optimal	1.98 + 3b		

Table 5. Pricing of users (1,2) and (1,7) in single and ridesharing taxi riding

Conclusions

- First model to formally address both user and operator behavior
- Identify the types of cost allocation possible for designing new cost sharing mechanisms for different mobility systems
- Identify the challenges of considering segment capacity and congestion effects for future research
- Cost sharing policies instead of in advance cost sharing policies
- Matching part of demand to routes (Flow)

Acknowledgments

This research was supported by a grant from the National Science Foundation, CMMI-1634973.

Citation

- Rasulkhani, S., Chow, J.Y.J., 2018. Route-cost-assignment with joint user and operator behavior as a many-to-one stable matching assignment game. In: 97th Annual Meeting of the TRB, working paper available at https://arxiv.org/abs/1711.11230.
- Contact info
 - Saeid Rasulkhani, <u>Saeid@NYU.edu</u>
 - Joseph Chow, <u>Joseph.Chow@NYU.edu</u>

