

Evaluation of FHWA Pile Design Methods Against the FHWA Deep Foundation Load Test Database (v.2)

Nikolaos Machairas, Magued Iskander, Gregory Highley

Transportation Research Board 97th Annual Meeting
Lectern Session 487: Analysis, Design, and Performance of Bridge Foundations and Other Structures
Tuesday 1/9/2018, 8:00 AM-9:45 AM - 204B, Convention Center
Sponsored by the Standing Committee on Foundations of Bridges and Other Structures (AFS30)

- Large uncertainty in pile capacities in geology does not permit bearing on rock
 - Driven pile design methods are mainly empirical or semi--empirical
 - Pile load tests are expensive and time--consuming
 - Few publicly available databases
- Comparison between calculated and interpreted capacities for large data sets provides insight of suitability of use of current design methods under varying pile and soil conditions.
 - FHWA Database DFLTD v.2 (Petek et al. 2016)
 - FHWA Design Method (Hanigan et al. 2006)
- Scope: Impact -driven, un-tapered, steel and concrete piles, loaded in compression, using a static load test.
 - Q_c/Q_m capacity in sands, clays, and mixed soils.
 - Effect of pile type, pile length, and the pile diameter on the Q_c/Q_m is explored.

- Interpreted pile capacity calculations occur using load--settlement curve data generated during an axial static load test of a driven pile.
- Several methods can be used to interpret the capacity of a static load test
- FHWA adopts Davisson's (1972)
 Criterion
- Batch processing, in Python, produced hundreds of interpreted pile capacities

Q_c: Predicted (aka. Calculated) Capacity

- Dozens of Methods available to calculate the static axial capacity of piles
- FHWA Driven Pile Foundation Manual adopts two methods
 - Nordlund for Cohesionless Soils
 - Tomlinson for Cohesive soils
- Batch processing, in Python, produced hundreds of calculated capacities.
- FHWA suggests some approximations to bridge missing data
 - Bowles 1977 (Caltrans 2004)

Federal Highway Administration

Publication No. FHWA NHI-05-042

NHI Courses No. 132021 and 132022

Design and Construction of Driven Pile Foundations

Reference Manual - Volume I

National Highway Institute

TRB 2018

- When available, angle of friction φ and unit weight γ were used as stored.
- When not available, φ and γ where approximated from SPT blow counts as detailed in the FHWA manual (after Bowles, 1977) and additional guidance from CALTRANS 2004

Corrected SPT-N	0 to 4			4 to 10			10 to 30			30 to 50			50+		
Ranges	min	avg	max	min	avg	max	min	avg	max	min	avg	max	min	avg	max
Approximate φ (degrees) [‡]	25	27.5	30	27	29.5	32	30	32.5	35	35	37.5	40	38	40.5	43
Approximate γ (lb/ft³)§	70	85	100	90	102.5	115	110	120	130	110	125	140	130	140	150

Uncorrected SPT-N	0 to 2	2 to 4	4 to 8	8 to 16	16 to 32	32+
Approximate q_u (ksf)	0 - 0.5	0.5 - 1.0	1.0 - 2.0	2.0 - 4.0	4.0 - 8.0	8.0+
Approximate γ (lb/ft ³)§	100 - 120	100 - 120	110 - 130	120 - 140	120 - 140	120 - 140

‡ Caltrans guidance for soil friction φ : SW: use average φ + 1°, SC: use φ , ML use minimum φ + 0.5°, GM and SP use average φ , GC: use average φ -1°, GW: use maximum φ

§Caltrans guidance for moist unit weight γ: SW, GW: use maximum γ, SP, GP: use average γ, ML, SC, SM: use minimum γ

Empirical values for φ, qu, and γ based on SPT Blow Counts (after Bowles, 1977 and CALTRANS 2004)

Main US Pile Load Test Databases

- Nordlund developed his method of calculating bearing capacity of piles in sand from a database of 41 load tests from 8 different sites
- **Tomlinson** employed a database of 56 piles to develop his popular α-method
- Olson (1983) organized first large modern database which led to the development of the popular API RP2A method for capacity of piles in sand, and other methods in clay
- Briaud (1987) "Evaluation of API Method Using 98 Vertical Pile Load Tests."
- Carl Ealy led FHWA DFLTD (2000) updated by Petek et al in 2016 (DFLTD v.2)
- State DOTs (2000 to 2016) CALTRANS, Iowa (PILOT), Illinois, Florida, Louisiana (LAPLTD)

No uniformity, highly dissimilar, unstructured, semi-structured or structured databases with little to no data validation

- Petek et al.
 - DFLTD v1 + 155 large diameter open-ended load tests
 - 3,116 unique project/exploration/foundation /test cases (916 projects with 1,798 load tests)
 - MS Access
- Converted to SQL by authors
- 213 records suitable for Nordlund/Tomilinson
 - Data completion
 - Static test results must allow capacity interpretation by the Davisson criterion

Process of filtering available test records

TRB 2018

ETL: Extract, Transform & Load

Pile Foundation Record Form

- A pile record form was auto generated for each of the 213 test record employed
 - Visual examination of each record
- Q_m was also auto calculated from the load/settlement curve
- Q_c was computed per FHWA, side and toe resistances presented separately
- The form visualizes all necessary information for the calculation of pile capacity, a marked improvement over DFLTD v.2 GUI

Example of auto--generated pile record form

Qc/Qm in Sand, Clay and Mixed Profiles

- Better
 performance in
 clay than in
 sand.
- Variation in Qc-Sand could be related to the correlation used for soil friction angle with SPT.

Distribution of calculated (Q_c) v. interpreted (Q_m) capacity for all soil profiles

TRB 2018

Performance Based on Pile Type

- Difficult to generalize.
- Round concrete piles exhibited the highest average.
- The effect of pile shape on calculated capacity is a point for future exploration.

Distribution of calculated $(Q_{_{\rm c}})$ v. interpreted $(Q_{_{\rm m}})$ capacity for six pile types

- Regression suggests that capacity can be overestimated by 100% for a 250 ft long pile (LHS)
- Length effect virtually disappears for piles having 0.33 < Q_c/Q_m < 3 (RHS, 85% of total)
- Fewer than 20 tests with lengths > 100 ft are available, having 0.33 < Qc/Qm < 3

Effect of Pile Penetration Length on Q_c/Q_m for all pile types. (LHS: All tests. RHS: Outliers removed)

- Capacity can be overestimated by 15% for each additional 12 inch increase in pile diameter (LHS)
- Diameter effect reverses for the 183 piles (85% of total) having 0.33 < Q_c/Q_m < 3 (RHS)
- Causes for concern
 - Few large diameter tests
 - Data quality issues

Effect of Pile Diameter on the ratio of calculated (Q_c) to interpreted (Q_m) capacity for six pile types. LHS: All tests. RHS: Outliers removed

- FHWA is a good method, but with high uncertainty
- The range in Q_c/Q_m was from 0.12 to 8.88.
 - Mean Q_c/Q_m = 1.6 in sand
 - Mean Q_c/Q_m= 1.2 is clay
 - Mean Q_c/Q_m= 1.43 in mixed profiles
- Significant scatter between Q_c and Q_m
 - 29% of cases are off by a factor of two or more
 - Data quality manifests itself in length and diameter effects that disappear when analyses are performed with 0.33 < Qc/Qm < 3
- Method performs better in clay than in sand
 - o Influence of approximate relationship between SPT and angle of friction φ and unit weight γ in sand

Thank You

Questions?