

EXPLORING THE SPATIAL DEPENDENCE AND SELECTION BIAS OF DOUBLE PARKING CITATIONS DATA

C2 SMART TRANSPORTATION

Paper 18-03899

Jingqin Gao*, Ms.c, Kun Xie**, Ph.D., Kaan Ozbay*, Ph.D. *New York University, **University of Canterbury

Contact: jingqin.gao@nyu.edu

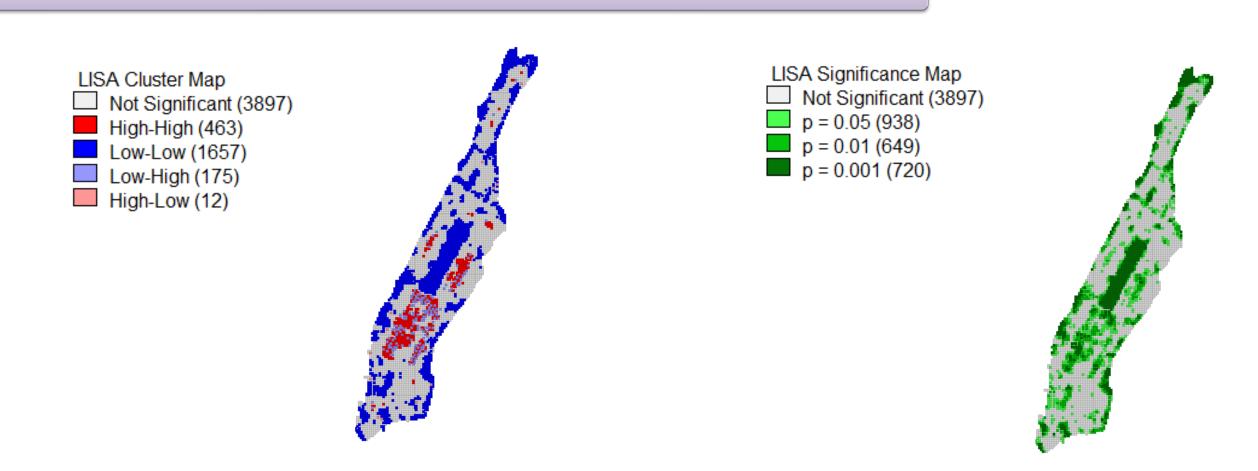
Parking violation citations, often used to identify contributing factors to parking violation behaviors, is one of the most valuable datasets for traffic operation research. However, little has been done to examine its spatial dependence caused by location-specific differences in features such as traffic, land use, etc., and potential selection biases resulting from different levels and coverage of traffic enforcement.

This study leveraged extensive data on double parking citations in Manhattan, New York in 2015, along with other datasets including land use, transportation and socio-demographic features to investigate the following:

- Global and Local Moran's I statistics Spatially Autocorrelation
- **Selection Bias** Investigate the effects of parking ticket density and police precinct distance, when controlling for variables such as commercial area, truck activity, taxi demand, population, hotel and restaurant.

Parking ticket density and police precinct distance were used as indicators of the enforcement levels and coverage and were found to be statistically significant.

	All Parking Violations	Double Parking Violations		
Total number of tickets in 2015	10,905,102	695,369		
%Commercial vehicle tickets	19.4%	45.2%		
%Passenger cars tickets	72.5%	47.3%		
%Tickets issued in Manhattan	34.0%	58.8%		
%Tickets issued in Brooklyn	20.7%	17.5%		
%Tickets issued in Queens	18.3%	7.8%		
%Tickets issued in Bronx	10.1%	14.2%		
%Tickets issued in Staten Island	0.9%	0.2%		
%Tickets issued during Weekday	85.7%	89.9%		
%Tickets issued during Weekend	14.3%	11.1%		

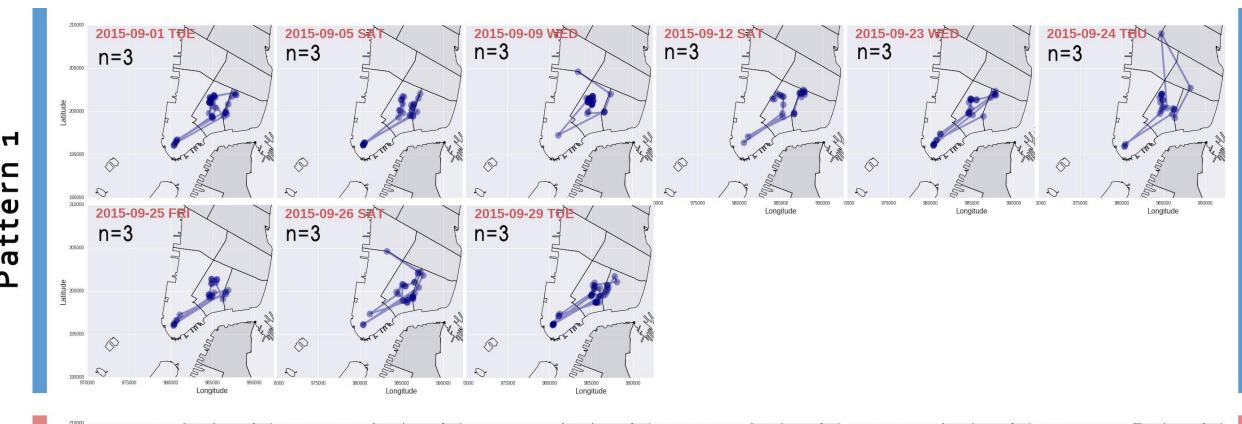

Global Moran's I Statistics

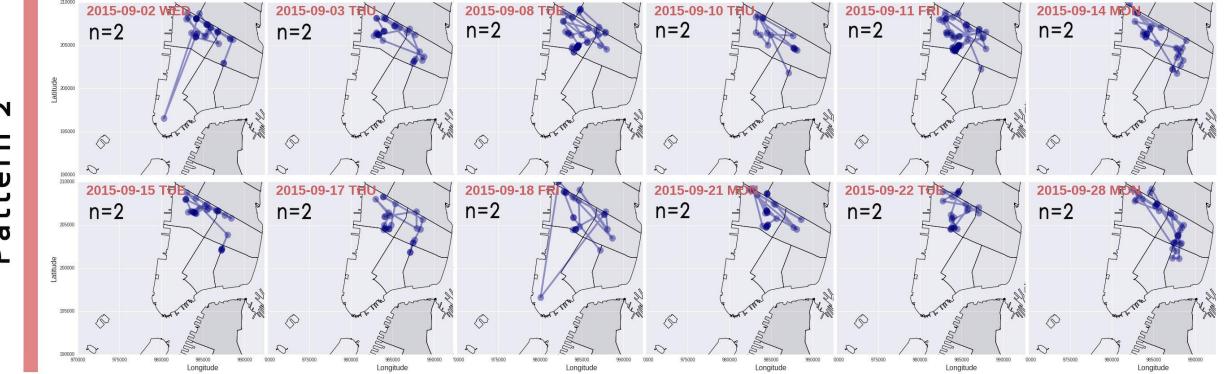
Weight Matrix	I	E[I]	SD[I]	$\mathbf{Z_{i}}$	Pseudo p-value
Threshold Distance-300 feet	0.3321	-0.0002	0.0090	36.9521	0.0001
Threshold Distance-800 feet	0.2581	-0.0002	0.0041	62.7201	0.0001
4-nearest neighbor	0.3318	-0.0002	0.0089	37.2234	0.0001
8-nearest neighbor	0.3262	-0.0002	0.0063	51.8185	0.0001

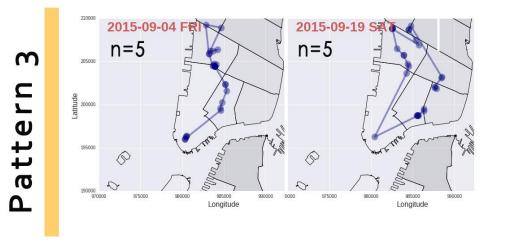
Parking

Citations

Local Moran's I Statistics - LISA


Model Results and Assessment


To investigate whether selection bias exists in issuing parking tickets, the effects of parking ticket density and police precinct distance were estimated while controlling for variables such as commercial area, truck activity, taxi demand, population, hotel and restaurant.


- Parking ticket density Indicator of the level of enforcement Positive Impact
- Police Precinct Distance Indicator of the enforcement coverage Negative Impact

Wawahlaa	Standard M	Standard Model		Spatial Lag Model		Spatial Error Model	
Variables	Coefficient	p-Value	Coefficient	p-Value	Coefficient	p-Value	
Intercept	-12.712	< 0.001	-14.472	< 0.001	-11.501	0.006	
Experimental variables							
Parking ticket density	5.313	< 0.001	3.044	< 0.001	5.199	< 0.001	
Police precinct distance	-18.433	< 0.001	-14.665	0.002	-18.112	0.001	
Control variables							
Commercial ratio	8.829	0.014	6.630	0.060	10.927	0.004	
Hotel distance	6.606	< 0.001	6.053	< 0.001	6.592	< 0.001	
Restaurant density	7.316	< 0.001	7.204	< 0.001	7.311	< 0.001	
Total population	0.040	< 0.001	0.037	< 0.001	0.034	< 0.001	
Truck ratio	1.210	< 0.001	1.225	< 0.001	1.283	< 0.001	
Taxi drop-offs	0.886	< 0.001	0.825	< 0.001	0.862	< 0.001	
Autoregressive Parameter							
ho			0.224	< 0.001	-	_	
λ			-	-	0.245	< 0.001	
Model Assessment							
\mathbb{R}^2	0.225		0.259		0.263		
AIC	73683.300		73486.300		73469.900		
BIC	73743.800	507	73553.600		73530.500		

Demonstration of patrol patterns of traffic enforcement

Traffic enforcement units patrolling patterns revealed that the majority of the units have less than three daily patterns.

Conclusions

- The global and local Moran's I statistics were in complete agreement that double parking citations were spatially dependent and such spatial dependence should not be neglected when using citation data.
- Both of the experimental variables Parking ticket density & Police Precinct
 Distance were found to be statistically significant, confirming the assumption that
 certain selection bias caused by enforcement intensity exists in the parking ticket
 data.
- These findings can assist proper usage of the citation data by suggesting researchers and agencies to consider spatial dependence as well as selection bias, and provide insights for parking violation management strategies.

Spatial Analysis

Selection Bias Police Patrol

